Cofilin Produces Newly Polymerized Actin Filaments that Are Preferred for Dendritic Nucleation by the Arp2/3 Complex
نویسندگان
چکیده
One of the earliest events in the process of cell motility is the massive generation of free actin barbed ends, which elongate to form filaments adjacent to the plasma membrane at the tip of the leading edge. Both cofilin and Arp2/3 complex have been proposed to contribute to barbed end formation during cell motility. Attempts to assess the functions of cofilin and Arp 2/3 complex in vivo indicate that both cofilin and Arp2/3 complex contribute to actin polymerization: cofilin by severing and Arp2/3 by nucleating and branching. In order to determine if the activities of cofilin and Arp2/3 complex interact, we employed a light microscope-based assay to visualize actin polymerization directly in the presence of both proteins. The results indicate that cofilin generates barbed ends to increase the mass of freshly polymerized F-actin but does not directly affect the activity of Arp2/3 complex. However, while ADP, ADP-Pi, and newly polymerized ATP-filaments are all capable of supporting Arp2/3-mediated branching, newly polymerized F-actin supports most of the Arp2/3-induced branch formation. The results suggest that, in vivo, cofilin contributes to barbed end formation by inducing the initial increase in the number of barbed ends leading to increased ATP-F-actin, which in turn supports higher levels of dendritic nucleation by active Arp2/3 complex.
منابع مشابه
Cofilin Dissociates Arp2/3 Complex and Branches from Actin Filaments
BACKGROUND Actin-based cellular motility requires spatially and temporally coordinated remodeling of a network of branched actin filaments. This study investigates how cofilin and Arp2/3 complex, two main players in the dendritic nucleation model, interact to produce sharp spatial transitions between densely branched filaments and long, unbranched filaments. RESULTS We found that cofilin bind...
متن کاملArp2/3 Complex and Cofilin Modulate Binding of Tropomyosin to Branched Actin Networks
Tropomyosins are coiled-coil proteins that bind actin filaments and regulate multiple cytoskeletal functions, including actin network dynamics near the leading edge of motile cells. Previous work demonstrated that tropomyosins inhibit actin nucleation by the Arp2/3 complex and prevent filament disassembly by cofilin. We find that the Arp2/3 complex and cofilin, in turn, regulate the binding of ...
متن کاملArp2/3 Complex and Actin Depolymerizing Factor/Cofilin in Dendritic Organization and Treadmilling of Actin Filament Array in Lamellipodia
The leading edge (approximately 1 microgram) of lamellipodia in Xenopus laevis keratocytes and fibroblasts was shown to have an extensively branched organization of actin filaments, which we term the dendritic brush. Pointed ends of individual filaments were located at Y-junctions, where the Arp2/3 complex was also localized, suggesting a role of the Arp2/3 complex in branch formation. Differen...
متن کاملActin Filament Severing by Cofilin Dismantles Actin Patches and Produces Mother Filaments for New Patches
BACKGROUND Yeast cells depend on Arp2/3 complex to assemble actin filaments at sites of endocytosis, but the source of the initial filaments required to activate Arp2/3 complex is not known. RESULTS We tested the proposal that cofilin severs actin filaments during endocytosis in fission yeast cells using a mutant cofilin defective in severing. We used quantitative fluorescence microscopy to t...
متن کاملGMF Is a Cofilin Homolog that Binds Arp2/3 Complex to Stimulate Filament Debranching and Inhibit Actin Nucleation
Cell locomotion and endocytosis are powered by the rapid polymerization and turnover of branched actin filament networks nucleated by Arp2/3 complex. Although a large number of cellular factors have been identified that stimulate Arp2/3 complex-mediated actin nucleation, only a small number of studies so far have addressed which factors promote actin network debranching. Here, we investigated t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 12 شماره
صفحات -
تاریخ انتشار 2002